

Environmental Product Declaration

EN ISO 14025:2010 EN 15804:2012+A1:2013

Screed mortar

Publication date:202Valid until:202

2020-10-02 2025-10-01

GlobalEPD code: 006-021

FOSROC EUCO, S.A.U.

The holder of this Declaration is responsible for its contents and for keeping the records and the documentation that supports the data and statements included during the validity period.

FOSROC	Holder of Declaration Fosroc Euco, S.A.U. Gasteiz Bidea, 11 48213 Izurza España	Tel Mail Web	spain@	46 217 160 yfosroc.com vww. fosroc.com
FOSROC	LCV study Fosroc Euco, S.A.U. Gasteiz Bidea, 11 48213 Izurza España	Tel Mail Web	spain@	46 217 160 Jfosroc.com vww.fosroc.com
AENOR Confía	GlobalEPD Programme Ope AENOR Internacional S.A.U. Génova 6 28004 Madrid España	erator	Tel Mail Web	(+34) 902 102 201 aenordap@aenor.com www.aenor.com

AENOR is a founding member of the ECO Platform, the European Association of Verification Programmes for Environmental Product Declarations

GlobalEPD-RCP-006 European standard EN 15804:2012+A1:2013 serves as the core RCP								
Independent verification of the Declaration and data, according to EN ISO 14025:2010								
Internal External								
Verification body AENOR								

1 General information

1.1. The organisation

The owner of this Environmental Product Declaration (EPD) is Fosroc Euco, S.A.U.

Fosroc Group, always at the forefront of chemical technology, focuses on designing effective solutions for repairing and installing concrete structures. Its solutions include concrete repair mortars, resin anchors, grouts for foundations, waterproofing systems, flooring and coatings, adhesives and sealants, surface treatments and admixtures for concrete and mortar.

Fosroc Group has factories in more than 20 countries and has been providing construction solutions adapted to virtually any type of construction project for over 80 years, combining high-quality products with specialised technical support, customer service and innovation.

Fosroc products were first marketed in Spain in 1970. Its headquarters (offices, factory and laboratory) are in Izurza (Vizcaya).

Fosroc is committed to improving environmental performance throughout its organisation. Fosroc Euco, S.A.U.'s factory implemented an Environmental Management System in accordance with ISO 14001.

1.2. Scope of the declaration

This declaration is a product family individual EPD.

This Global EPD Declaration for screed mortars was prepared with the yearly production weighted average data for the eleven screed mortars manufactured at Fosroc Euco, S.A.U.'s production centre in Izurza (Vizcaya).

The EPD is based on 2019 production data.

More specifically, it is the average of the eleven screed mortar references manufactured by Fosroc Euco, S.A.U.

1.3. Life cycle and compliance

This EPD was developed and verified according to UNE-EN ISO 14025:2010 and UNE-EN 15804:2012+A1:2014 and Category Rules GlobalEPD-CPR-006 rev.1 Mortars.

It is a cradle-to-gate environmental declaration with the life-cycle stages shown in Table 1.

This Declaration may not be comparable to declarations developed in other programmes or using different reference documents, especially when such declarations have not been developed and verified in accordance with UNE-EN 15804.

Similarly, Environmental Declarations may not be comparable if the origin of the data is different (e.g. databases), not all relevant information modules are included, or they are not based on the same scenarios.

t a	A1	Raw material supply	Х
Product stage	A2	Transport	Х
L L	A3	Manufactoring	Х
Constuction process stage	A4	Transport	MNE
bi	A5	Construction installation	MNE
	B1	Use	MNE
	B2	Maintenance	MNE
Ige	B3	Repair	MNE
Use stage	B4	Replacement	MNE
SU	B5	Refurbishment	MNE
	B6	Operational energy use	MNE
	B7	Operational water use	MNE
age	C1	Deconstruction, demolition	MNE
ife st	C2	Transport	MNE
End of life stage	C3	Waste processing	MNE
Enc	C4	Disposal	MNE
Benefits and loads beyond the system boundary	D	Reuse, recovery, recycling, potential	MNE

X = Module included in the LCA; NR: Not relevant module MNE= Module not evaluated

 Table 1.

 System boundaries. Information modules declared

2 The product

2.1. Product identification

The product covered by this Declaration is a screed mortar, according to UNE-EN 13813 and 13328 "Screed material and floor screeds", which sets out the technical characteristics.

According to the Central Product Classification (CPC), these screed mortar are classified under code 3751: "Non-refractory mortars and concretes".

These materials are used for levelling and coating indoor or outdoor flooring.

The products covered by the EPD are shown in Table 2:

Product identification	Product designation
1	Cemtop GP
2	Cemtop GPF
3	Nitoflor Deco
4	Nitoflor Deco BS
5	Nitoflor FC150 IM
6	Nitoflor FC150 IM-AS
7	Nitoflor FC150 LM
8	Nitoflor Coving UT
9	Nitoflor HB200 UT
10	Nitoflor RT6000 UT
11	Nitoflor SL3000 UT

Table 2. Products included in the LCA study

Characteristics of the product referred to in the declaration:

- Product service life: 50 years
- Reference mass of material for end use: 1.7 kg/m²
- Product density: 1600 kg/m³
- Typical layer thickness: 6-30 mm

2.2. Product performance

Screed and floor finishing mortars extend the life and improve the performance of floors and other concrete surfaces.

A wide variety of mortars are available to achieve the desired results in all environments:

- Flooring systems that withstand light to heavy traffic and are resistant to oils, fuels and chemicals.

- Hygienic coatings that are resistant to stains and aggressive cleaning.

- High-strength, self-levelling systems for projects that require rapid commissioning.

2.3. Product composition

The mortar is composed of binders, mineral fillers and additives.

The virtual screed mortar analysed is for a yearly production weighted average of the references manufactured at Izurza production centre in Vizcaya.

Substance	Content	Deviation
Aggregates	39%	44%
Cement	26%	71%
Resin	16%	100%
Hardener	13%	75%
Water	4%	136%
Others	5%	69%

Table 3. Main components of the product.

The manufacturer declares that none of the components of the final product are included in the Candidate List of Substances of Very High Concern for authorisation of the REACH regulation.

3 LCA information

3.1. Life-cycle analysis

This environmental product declaration aims to assess and report the potential environmental impacts of screed mortars.

The EPD is based on a cradle-to-gate life-cycle analysis conducted according to UNE-EN ISO 14044. Environmental Management. Life cycle assessment. Requirements and guidelines.

The EPDs prepared according to the Mortar Product Category Rules are based on information modules defined in UNE-EN 15804. Specifically, the product stage (modules A1-A3) is included, while the construction process stage (modules A4-A5), the use stage (modules B1-B7) and the end-of-life stage (modules C1-C4) are left out.

The data used in modelling the production processes were obtained in 2019. These data are a representative reflection of the company's activity in manufacturing the analysed product under study.

The Ecoinvent v3.4 database was used to select non-specific data such as raw material production. This EPD sets out the average performance of eleven screed mortars produced by Fosroc Group at its Izurza plant. An individual calculation was completed for each product and a weighted average was then calculated according to production for each reference, in order to reference the data to 1 kg of mortar. When calculating the LCA, the following methods were used to find the results with the Simapro programme by Pré Consultants (v.8.5.0).

Environmental parameter	Method
Descriptive parameters of environmental impacts	CML-IA baseline (Version 4.2)
Resource usage descriptor parameters	Cumulative Energy Demand
Parameters that describe the output stream	EDIP

Table 4. Calculation methods used

3.2. Functional or declared unit

The declared unit has been defined as: "**1 kg of** pakaged mortar".

3.3. Reference service life (RSL)

The defined reference service life is 50 years, as set out in the applicable PCR.

3.4. Allocation and cut-off criteria

A physical criterion (mass) was applied to assign the inputs and outputs of the production system to each product, based on production for the flows associated with the production process, such as energy consumption and waste generation.

As specified in EN 15804:2012+A1:2013, all materials or consumables that account for 1% of the unit process to be studied may be excluded.

3.5. Data representativeness, quality and selection

The inventory data were provided directly by the company. In the case of unavailable primary data, theoretical calculations or estimates were completed or data from internationally renowned life-cycle inventory databases were assimilated. These data are for 2019 and are representative of the products analysed.

Variation between the different product references is over 10%, meaning the minimum and maximum impact values within the family, as well as the relevant deviations, will be declared, as specified in the PCR. This information is presented in Annexes I and II of this Declaration.

3.6. Other calculation rules and assumptions

A life-cycle analysis was performed on each product individually, and the results were then weighted according to production. Calculations were made for 1 kg of packaged mortar.

With regards to energy allocation, this section only has electricity consumption, which was calculated by mass allocation of yearly production to the expenditure indicated in the invoices for this year (2019).

Auxiliary materials solely for the production process under study (mainly greasing of machinery and filtering materials) were calculated based on this section's production. Those used in more sectors at the factory (e.g. forklift maintenance) were calculated for total factory production.

There are no assumptions about transport to site, stage of use or end of life, as these exceed the limits of the proposed system. It was assumed that the trucks transporting raw materials to the plant are EURO IV category, as no information is available in this regard.

3.7. Deviations in impact results

The LCA results show the average environmental impacts associated with the products studied.

The products analysed indicate deviations of more than 10% above or below the weighted average, as shown in Table 5. Annexes I and II set out the maximum and minimum values according to the environmental impact category.

Impact category	Variation
ADPE	442%
ADPF	623%
GWP	495%
ODP	1270%
РОСР	868%
AP	741%
EP	1045%
FW	1392%
HWD	565%
NHWD	358%
RWD	431%
PERT	543%
PERNT	619%

Table 5. Variation with respect to the weighted average

4 System boundaries, scenarios and additional technical information

The scope of the study is from cradle to gate, covering only the manufacturing module.

4.1. Upstream processes and product manufacturing (A1-A3)

The cement and aggregates arrive in tanker trucks. The main raw materials are pumped pneumatically into silos from the tanker trucks.

From here, the raw materials are transferred to a dosing silo thanks to a screw conveyor that weighs the required quantities, which are conveyed to the mixer by gravity. Minority raw materials are added manually at this point. From the mixer, the mortar is transferred to the packer by a screw conveyor. Finally, the bags are palletised and covered with plastic film.

The dust generated during the production process is sucked through a duct to a sleeve filter that retains the dust, discharging clean air to the outside; this is the reason why particle emissions have not been considered.

The majority liquid components are automatically transported from the storage silos to the liquid mixer where the minority raw materials are added manually. They are mixed at room temperature for 5 minutes and then stored or packaged as required.

The waste generated in production comes mainly from the packaging for the additives used in manufacturing the mortar, waste from the product itself, or remains of packaging that has reached its end of life.

4.2. Transport and construction process (A4-A5)

Modules A4-A5 not evaluated.

4.3. Use related to the building structure

Modules B1-B5 not evaluated.

4.4. Use related to operation of the building

Modules B6-B7 not evaluated.

4.5. End of life

Modules C1-C4 not evaluated.

4.6. Benefits and loads beyond the building system boundaries

Module D not evaluated.

5 LCA and LCI environmental parameter declaration

The estimated impact results are relative and do not indicate the final value of the impact categories, nor

do they refer to threshold values, safety margins or risks.

	A1-A3 (Total)	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	Сз	C4	D
GWP	6,97E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ODP	1,40E-07	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
AP	2,54E-03	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
EP EP	1,17E-03	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ОЗ РОСР	2,54E-04	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ADPE	3,83E-06	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ADPF	1,01E+01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
GWP	[kg CO ₂ eq]	Global	warmir	ng pote	ntial										
	[kg CFC-11 eq]				ayer dep	letion p	ootentia	ıl							
AP	[kg SO ₂ eq]	Acidifi	ation p	otentia	l of soil	and wa	ter resc	ources							
EP	[kg (PO ₄) ³⁻ eq]	Eutrop	hicatior	n poten	tial										
POCP	POCP [kg etileno eq]		pheric o	ozone fo	ormatio	n poten	tial								
ADPE	ADPE [kg Sb eq]			ce depl	etion po	otential	for non	-fossil r	esource	s (ADP-	elemen	ts)			
ADPF	[M]]	Abiotic	resour	ce depl	etion po	tential	for foss	il resou	rces (AD	P-fossil	fuels)				

 Table 6. Parameters describing the environmental impacts according to UNE-EN 15804

													1	1			
		,	A1-A3 (Total)	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
	PERE		5,86E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	PERM		0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	PERT		5,86E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	PENRE	8,65E+00		MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
Ţ	PENRM	3,05E+00		MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
•	PENRT	1,17E+01		MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	SM		0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
3	RSF		0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	NRSF		0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	FW		3,23E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	PERE	[M]]	Use of renewable primary e	energy exclu	uding re	newabl	e primai	ry energ	y resour	ces use	d as raw	, materi	als				
	PERM	[M]]	Use of renewable primary e														
	PERT	[M]]	Total use of renewable prim														
	PENRE	[M]]	Use of non-renewable prim	iary energy,	, excludi	ng non-	renewa	ble prim	nary ene	ergy resc	urces u	sed as r	aw mate	erials			
	PENRM	[M]]	Use of non-renewable prim	iary energy	used as	raw ma	aterial										
	PENRT	[M]]	Total use of non-renewable														
	SM	[Kg]	Use of secondary materials														
	RSF	[M]]	Use of renewable secondar	y fuels													
	NRSF	[M]]	Use of non-renewable seco	ndary fuels													
	FW	[m³]	Use of net fresh water.														

Table 7. Parameters describing the use of resources

AENOR Confía

9

		A1-A3 (Total)	A4	A5	B1	B2	Вз	B4	B5	B6	B7	C1	C2	Сз	C4	D
	HWD	1,17E-05	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	NHWD	1,68E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	RWD	2,40E-05	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	CRU	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	MFR	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	MER	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
7 , ``	EE	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	EET	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	HWD	[kg]	Hazaro	dous wa	ste disp	osed										
	NHWD	[kg]		iazardou			ed									
	RWD	[kg]	Radio	active w	aste dis	posed										
	CRU	[kg]	Comp	onents f	or reuse	2										
	MFR	[kg]	Mater	ials for r	eciclyin	g										
	MER	[kg]	Materi	ials for e	energy r	ecovery	1									
	EE	[M]]		ed ener												
	EET	[M]]	Export	ed ener	gy theri	mal										

Table 8. Parameters describing output flows and waste categories

Annex I LCA and LCI environmental parameter statements for

MINIMUM environmental impact format

This annex contains the parameters for the references with minimum impact value for the global warming category, with a variation of more than 10% with respect to the family average.

	A1-A3 (Total)	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	Сз	C4	D
GWP	3,41E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ODP	3,39E-08	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
AP	1,19E-03	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
P	3,21E-04	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ОЗ РОСР	6,57E-05	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ADPE	9,92E-07	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ADPF	4,15E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
GWP	[kg CO ₂ eq]	Global	warmii	ng pote	ntial										
ODP	[kg CFC-11 eq]				ayer dep	pletion p	ootentia	ıl							
AP	AP [kg SO, eq]		cation p	otentia	l of soil	and wa	ter resc	ources							
EP	[kg (PO ₄) ³⁻ eq]	Eutrop	hicatior	n poten	tial										
POCP	[kg etileno eq]	Tropos	pheric o	ozone f	ormatio	n poten	tial								
ADPE	[kg Sb eq]	Abiotio	resour	ce depl	etion po	otential	for non	-fossil r	esource	s (ADP-	elemen	ts)			
ADPF	[M]] Abiotic resource depletion potential for fossil resources (ADP-fossil fuels)														

Table 9. Parameters describing the environmental impacts according to UNE-EN 15804

	r				,												
		A1-A3	(Total)	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
	PERE	3,591	E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	PERM	0,00I	Ē+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
n	PERT	3,591	E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	PENRE	4,12[E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
II.	PENRM	1,041	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	
ے ا	PENRT	4,12E+00			MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
00	SM	0,00E+00		MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	RSF	0,00F	Ē≠00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	NRSF	0,00F	Ē≠00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	FW	1,421	E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	PERE	[M]]	Use of renewable primary	energy excli	uding re	newable	e primai	ry energ	y resour	ces used	d as raw	materia	als				
	PERM	[M]]	Use of renewable primary	energy usec	l as raw	materia	ıl										
	PERT		Total use of renewable prir														
	PENRE	[M]]	Use of non-renewable prin	nary energy	, excludi	ng non-	renewa	ble prin	nary ene	rgy reso	ources us	sed as ra	w mate	erials			
	PENRM	[M]] Use of non-renewable primary energy used as raw material															
	PENRT	[M]]	Total use of non-renewable	e primary ei	nergy												
	SM	[Kg]	Use of secondary materials														
	RSF	[M]] Use of renewable secondary fuels															
	NRSF		Use of non-renewable seco	ondary fuels	5												
	FW	[m³]	Use of net fresh water.														

Table 10. Parameters describing the use of resources

		A1-A3 (Total)	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	Сз	C4	D
	HWD	2,41E-06	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	NHWD	1,10E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	RWD	1,51E-05	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	CRU	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	MFR	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	MER	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
7→	EE	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
7 ,	EET	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	HWD	[kg]	Hazaro	l dous wa	aste disp	osed										
	NHWD	[kg]	Non-h	iazardou	us waste	e dispos	ed									
	RWD	[kg]	Radioa	active w	aste dis	sposed										
	CRU	[kg]	Compo	onents f	or reuse	2										
	MFR	[kg]		ials for r												
	MER	[kg]		ials for e		ecovery	r									
	EE	[M]]		ed ener												
	EET	[M]]	Export	ed ener	gy theri	mal										

 Table 11. Parameters describing output flows and waste categories

Annex II LCA and LCI environmental parameter statements for

MAXIMUM environmental impact format

This annex contains the parameters for the references with maximum impact value for the global warming category,

with a variation of more than 10% with respect to the family average.

	A1-A3 (Total)	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	Сз	C4	D
GWP	4,14E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ODP	1,92E-06	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
AP	2,13E-02	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
EP EP	1,33E-02	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ОЗ РОСР	2,46E-03	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ADPE	2,08E-05	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
ADPF	7,31E+01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
GWP	[kg CO ₂ eq]	Global	 warmii	ng pote	ntial										
	[kg CFC-11 eq]				ayer dep	oletion p	ootentia	ıl							
AP	[kg SO ₂ eq]	Acidifi	cation p	otentia	l of soil	and wa	iter resc	ources							
EP	[kg (PO ₄) ³⁻ eq]	Eutrophication potential													
POCP	[kg etileno eq]	Tropospheric ozone formation potential													
ADPE	[kg Sb eq]				etion po							ts)			
ADPF	[M]]	Abiotio	resour	ce depl	etion po	otential	for foss	il resou	rces (AE)P-fossi	fuels)				

Table 12. Parameters describing the environmental impacts according to UNE-EN 15804

г															
	A1-A3 (Total)	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	Сз	C4	D
PERE	3,77E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
PERM	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
PERT	3,77E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
PENRE	6,07E+01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
PENRM	2,95E+01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
PENRT	8,41E+01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
SM	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
TOTOT RSF	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
FW	4,82E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
PERE	[M]] Use of renewable primary	energy excl	uding re	newable	e primar	ry energ	y resour		1 as raw	/ materi	als				
PERM	[M]] Use of renewable primary					5									
PERT	[M]] Total use of renewable print														
PENRE	[M]] Use of non-renewable prin	nary energy	, excludi	ng non-	renewa	ble prim	nary ene	rgy reso	urces u	sed as r	aw mate	erials			
PENRM	[M]] Use of non-renewable primary energy used as raw material														
PENRT	[M]] Total use of non-renewable primary energy														
SM	[Kg] Use of secondary materials														
RSF	[M]] Use of renewable secondary fuels														
NRSF	[M]] Use of non-renewable secondary fuels														
FW	[m ³] Use of net fresh water.														

Table 13. Parameters describing the use of resources

		A1-A3 (Total)	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	Сз	C4	D
	HWD	7,76E-05	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	NHWD	7,69E-01	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	RWD	1,27E-04	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	CRU	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	MFR	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	MER	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
7 →	EE	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
· 	EET	0,00E+00	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE	MNE
	HWD	[kg]	Hazaro	lous wa	iste disp	osed										
	NHWD	[kg]	Non-h	azardoı	is waste	e dispos	ed									
	RWD	[kg]	Radioa	active w	aste dis	posed										
	CRU	[kg]	Compo	onents f	or reuse	ē										
	MFR	[kg]	Materi	als for r	eciclyin	g										
	MER	[kg]		als for e		ecovery	,									
	EE	[M]]		ed ener												
	EET	[M]]	Export	ed ener	gy theri	mal										

 Table 14. Parameters describing output flows and waste categories

References

[1] General Rules of the GlobalEPD Programme, 2nd revision. AENOR. February 2016.

[2] UNE-EN ISO 14025:2010. Environmental labels and declarations. Type III Environmental declarations. Principles and procedures (ISO 14025:2006).

[3] UNE-EN 15804:2012+A1:2014 Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products.

[4] GlobalEPD-RCP-006 Mortars, rev.1. AENOR. November 2017.

[5] Life-cycle analysis of the family of screed mortars produced by Fosroc Euco, S.A.U. July 2020. Version 1.

Index

1	General information	3
2	The product	4
3	LCA information	5
4	System boundaries, scenarios and additional	
	technical information	7
5	LCA and LCI environmental parameter declaration	8
Annex I	LCA and LCI environmental parameter statements for MINIMUM	
	environmental impact format	11
Annex II	LCA and LCI environmental parameter statements for MAXIMUM	
	environmental impact format	14

A verified Environmental Declaration

GlobalEPD